Buckling Analysis of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium Using the Energy Method

Authors

  • M Mohammadimehr Department of Mechanical Engineering, University of Kashan
  • M Shokravi Department of Mechanical Engineering, University of Kashan
Abstract:

The axially compressed buckling of a double-walled carbon nanotabe surrounded by an elastic medium using the energy and the Rayleigh-Ritz methods is investigated in this paper. In this research, based on the elastic shell models at nano scale, the effects of the van der Waals forces between the inner and the outer tubes, the small scale and the surrounding elastic medium on the critical buckling load are considered.  Normal stresses at the outer tube medium interface are also included in the current analysis. An expression is derived relating the external pressure to the buckling mode number, from which the critical pressure can be obtained. It is seen from the results that the critical pressure is dependent on the outer radius to thickness ratio, the material parameters of the surrounding elastic medium such as Young’s modulus and Poisson’s ratio. Moreover, it is shown that the critical pressure descend very quickly with increasing the half axial wave numbers.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Small Scale Effect on the Buckling Analysis of a Double-Walled Carbon Nanotube under External Radial Pressure Using Energy Method

In this paper, using energy method, small scale effects on the buckling analysis of a double-walled carbon nanotube (DWCNT) under external radial pressure is studied. The constitutive equations derived for a DWCNT using the nonlocal theory of elasticity which Eringen are presented for the first time. By minimizing the second variation of the total energy for a DWCNT, hence, the value of the non...

full text

Thermal Effect on the Torsional Buckling of Double Walled Carbon Nanotube Embedded in Pasternak Foundation

In this study the effect of thermal stress on the torsional buckling of double walled carbon nanotubes is investigated. Moreover based on nonlocal continuum mechanic the buckling governing equations are obtained and equilibrium of Equations is generalized to double wall nanotubes. Also in this study the elastic medium, small scale effect and van der Walls force are considered. Also for simulati...

full text

Analysis of Nonlinear Vibrations for Multi-walled Carbon Nanotubes Embedded in an Elastic Medium

Nonlinear free vibration analysis of double-walled carbon nanotubes (DWCNTs) embedded in an elastic medium is studied in this paper based on classical (local) Euler-Bernoulli beam theory. Using the averaging method, the nonlinear free vibration responses of DWCNTs are obtained. The result is compared with the obtained results from the harmonic balance method for single-walled carbon nanotubes (...

full text

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

the effect of carbon nanotubes on buckling analysis of embedded oil pipes resting on elastic medium

the theoretical and experimental investigation on the thermo-mechanical properties of carbon nanotube (cnt) as reinforcer for oil and gas pipes has increasingly become a hot research area for many engineers and material scientists in recent years. this is mainly due to the advent of the new composite material systems that exhibit exotic material and mechanical properties as compared to the trad...

full text

Postbuckling Equilibrium Path of a Long Thin-Walled Cylindrical Shell (Single-Walled Carbon Nanotube) under Axial Compression Using Energy Method

In this paper, an elastic shell model is presented for postbuckling prediction of a long thinwalledcylindrical shell under axial compression. The Ritz method is applied to solve the governingequilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differentialequations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walledcy...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 4

pages  289- 299

publication date 2009-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023